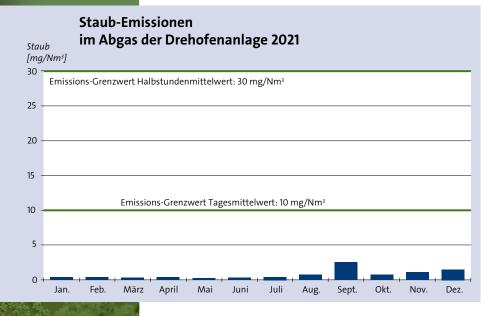
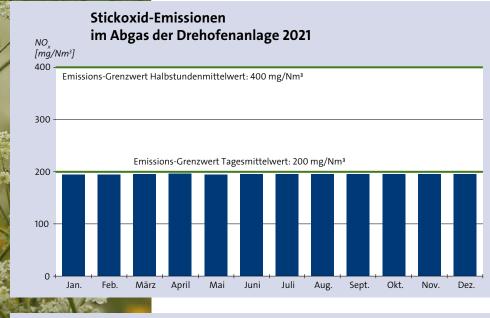
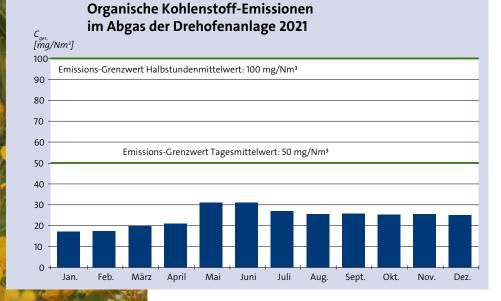


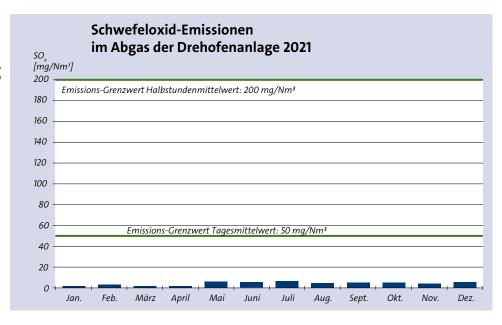
Ergebnisse Kontinuierliche Emissionsüberwachung der Klinkerproduktion

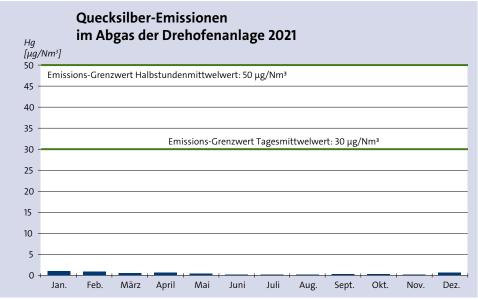

2021	Staub	Stickoxide	Schwefel- oxide	Quecksilber	Organische Kohlenstoffe	Chlor	Ammoniak	Kohlen- monoxid
		NO _x	SO _x	Hg	C _{ges.}	HCI	NH₃	со
	mg/Nm³	mg/Nm³	mg/Nm³	μg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³
Januar	0,22	193,47	0,91	0,95	16,89	0,44	9,80	558,07
Februar	0,23	193,56	2,61	0,83	17,10	0,42	11,47	666,07
März	0,23	193,61	1,12	0,52	19,37	0,31	11,21	811,77
April	0,24	194,33	1,02	0,57	20,68	0,12	11,84	773,76
Mai	0,15	193,36	5,49	0,35	30,40	0,33	12,69	635,71
Juni	0,16	193,39	4,73	0,17	30,30	0,10	12,57	604,62
Juli	0,29	193,46	5,86	0,10	26,39	0,13	9,77	618,29
August	0,63	193,47	4,02	0,09	24,88	0,06	11,50	863,66
September	2,51	193,74	4,39	0,20	25,28	0,17	10,18	834,94
Oktober	0,65	194,23	4,60	0,29	24,82	0,16	10,94	768,77
November	1,02	193,65	3,51	0,11	24,96	0,09	10,85	866,95
Dezember	1,43	193,82	4,80	0,57	24,64	0,39	13,87	944,32
Jahresmittel	0,68	193,62	3,73	0,38	23,98	0,23	11,36	746,52
Grenzwert als Tages- mittelwert	10 mg/Nm³	200 mg/Nm³	50 mg/Nm³	30 μg/Nm³	50 mg/Nm³	10 mg/Nm³	30 mg/Nm³	1.800 mg/Nm³

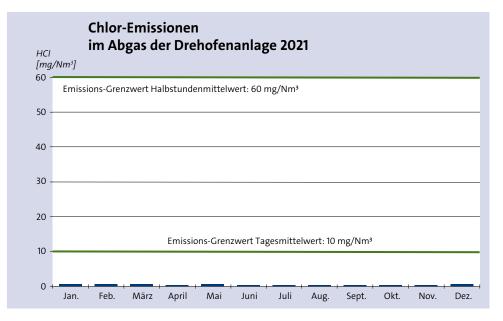

Verbrennungsbedingungen

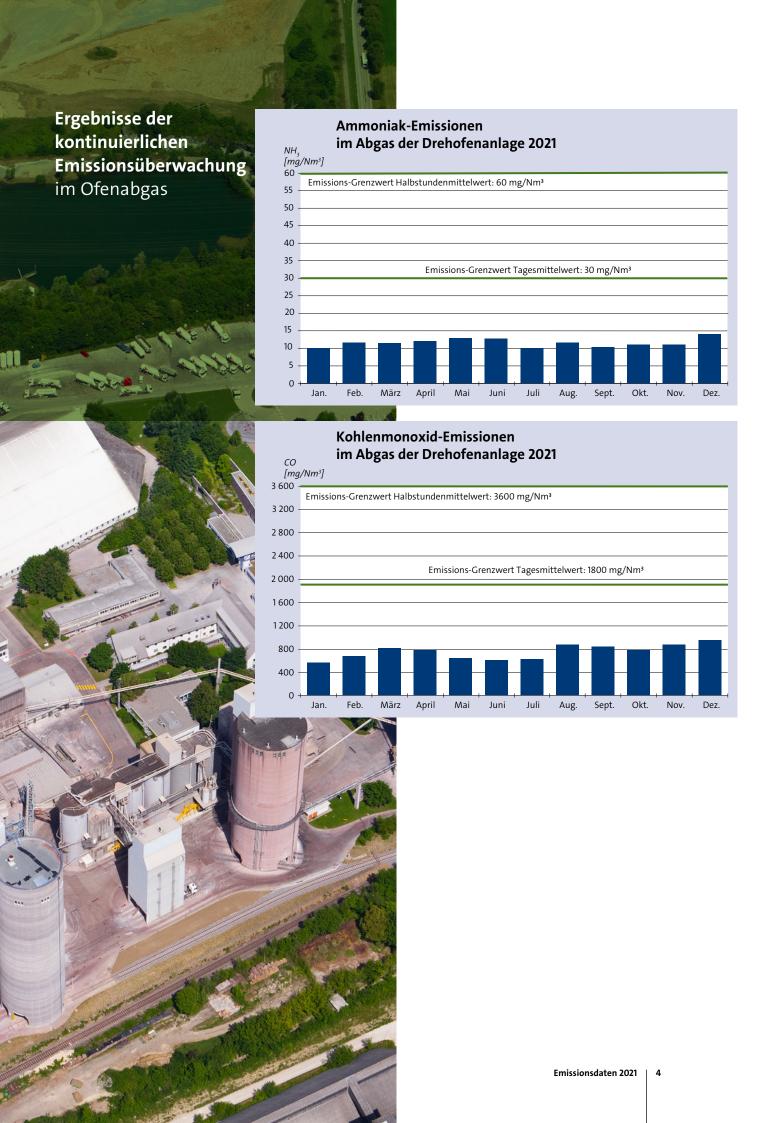

Die Vorgaben zu den Verbrennungsbedingungen wurden 2021 zu jedem Zeitpunkt nicht nur eingehalten, sondern immer deutlich übertroffen, so dass eine vollständige Verbrennung zu jedem Zeitpunkt gewährleistet war.

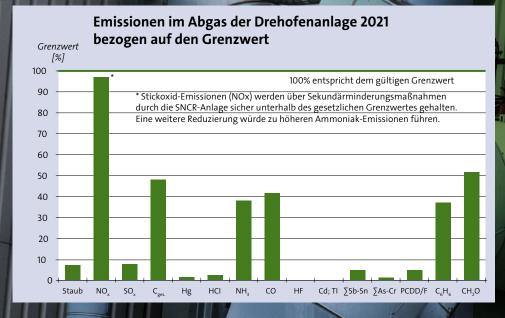
Einhaltung der Verbrennunsgbedingungen 2021								
Gesetzliche Forderung		überwacht durch	Genehmigungsauflage	tatsächlicher Wert				
Einhaltung der minimalen Abgastemperatur	°C	Abgastemperatur nach Wirbelschacht	> 750°C	885,26 °C				
Einhaltung des minimalen Sauerstoffgehalts	Vol%	Sauerstoffgehalt nach Zyklon 5	> 1,5 Vol%	2,71 Vol.%				
Einhaltung der minimalen Verweilzeit	sec.	Bauartbedingte Vorgabe	> 2 sec.	5-6 sec.				







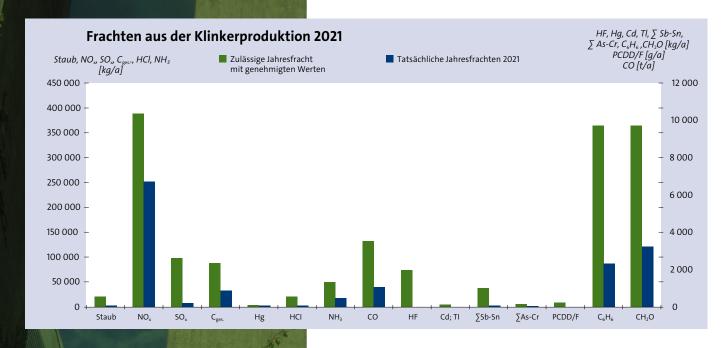

Ergebnisse der kontinuierlichen Emissionsüberwachung im Ofenabgas



Ergebnisse der jährlichen Einzelmessungen

im Ofenabgas

Alle Emissionen liegen weit unter den Grenzwerten.


Einzelmessungen durch ei			Grenz-	Mittelwert der Messwerte			
externes Institut (TÜV Süd	1)		werte	20.07.2021	21.07.2021	22.07.2021	
Gase							
Flourverbindungen	HF	mg/Nm³	1	<0,1	<0,1	<0,1	
Spurenelemente							
Cadmium	Cd	mg/Nm³		n.n	n.n	n.n	
Thallium	TI	mg/Nm³		n.n	n.n	n.n	
Antimon	Sb	mg/Nm³		n.n	n.n	n.n	
Arsen	As	mg/Nm³		n.n	n.n	n.n	
Blei	Pb	mg/Nm³		0,0006	n.n	0,00120	
Chrom	Cr	mg/Nm³	0.5	0,0007	0,0001	0,0007	
Cobalt	Со	mg/Nm³	0,5	n.n	n.n	n.n	
Kupfer	Cu	mg/Nm³		0,0029	0,0023	0,0055	
Mangan	Mn	mg/Nm³		0,0047	0,0033	0,0413	
Nickel	Ni	mg/Nm³		0,0013	0,0006	0,0019	
Vanadium	V	mg/Nm³		n.n	n.n	n.n	
Zinn	Sn	mg/Nm³		0,0006	n.n	0,0006	
Cadmium und Thallium	Cd; Tl	mg/Nm³	0,05	n.n	n.n	n.n	
Summe Antimon bis Zinn	Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn	mg/Nm³	0,5	0,0107	0,0064	0,0512	
Summe Arsen bis Chrom	As, Benzo(a)pyren, Cd, Co, Cr	mg/Nm³	0,05	0,0007	0,0001	0,0007	
Organische Stoffe							
Dioxine und Furane	PCDD / F	ng/Nm³	0,1	0,0021	0,0063	0,0050	
Benzol	C ₆ H ₆	mg/Nm³	5	1,9	2,1	1,5	
Formaldehyd	CH ₂ O	mg/Nm³	5	3,5	0,5	3,7	
n.n.: Werte liegen unterhalb	der Nachweisgrenze	6	4			10	

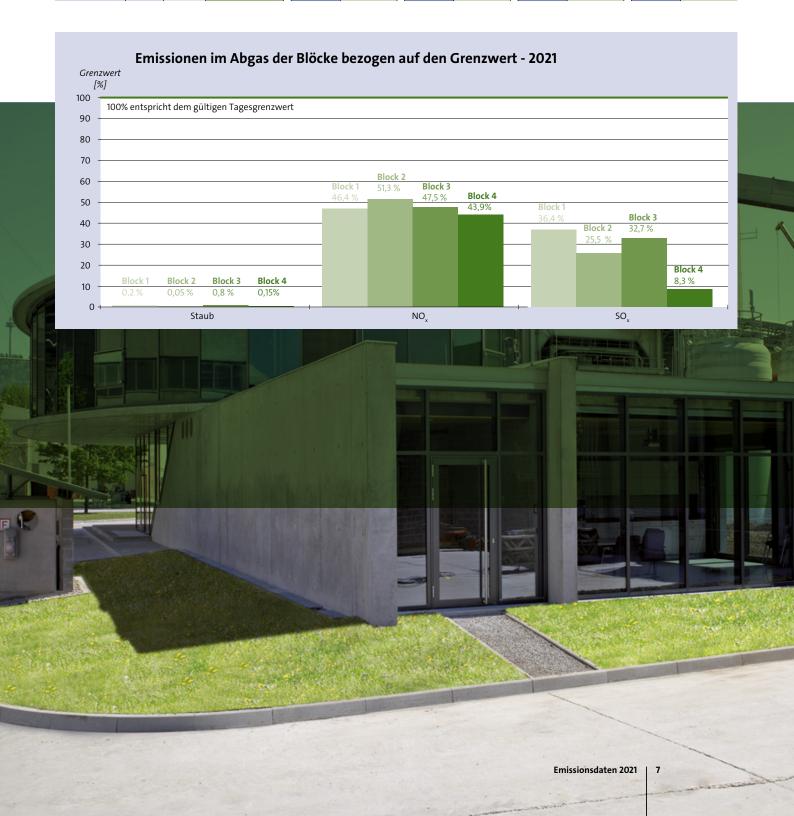
MAMMA

Kontinuierliche
Messung und
Einzelmessungen
im Vergleich zu den
Grenzwerten der
Klinkerproduktion

Jahresfrachten aus Ofenabgas

	2021		Frachten Klinkerpro	duktion	Zulässige Jahresfrachten mit genehmigten Werten	Tatsächliche Jahresfrachten 2021	% der zulässigen Frachten
Tatsächliche Jahresfrachten zu den		Gesamtstaub	Staub	kg/a	19.360	1.118	5,78
maximal zulässigen Jahresfrachten	gen	Stickoxide	NO _x	kg/a	387.192	250.750	64,76
der Klinkerproduktion	suns	Schwefeloxide	SO _x	kg/a	96.798	5.720	5,91
	he Messungen	organische Kohlenstoffe	C _{ges.}	kg/a	87.118	31.162	35,77
4	ierlic	Quecksilber	Hg	kg/a	58	0,61	1,05
4 1	Kontinuierliche	Chlorwasserstoff	HCI	kg/a	19.360	1.304	6,74
5.85		Ammoniak	NH ₃	kg/a	48.399	16.412	33,91
		Kohlenmonoxid	СО	t/a	3.485	1.015	29,12
人		Flourverbindungen	HF	kg/a	1.936	0	0
The Transaction		Cadmium und Thallium	Cd; Tl	kg/a	97	0	0
	Einzel-Messungen	Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V, Sn	∑ Sb-Sn	kg/a	968	28,37	2,93
		As, Benzo(a)pyren, Cd, Co, Cr	∑ As-Cr	kg/a	97	0,62	0,64
1 2 200	Einz	Dioxine und Furane	PCDD / F	g/a	194	0,000006	0,000003
		Benzol	C ₆ H ₆	kg/a	9.680	2.285	23,60
ACO WAY COM		Formaldehyd	CH₂O	kg/a	9.680	3.198	33,04

Die tatsächlichen Jahresfrachten werden berechnet über die gemessenen Emissionen und der tatsächlichen Anlagenauslastung in diesem Jahr.

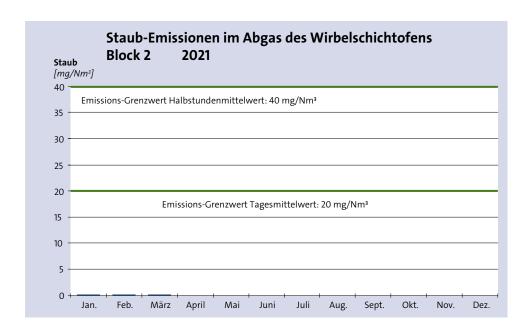

Die zulässigen Jahresfrachten ergeben sich aus den maximal zulässigen Emissionen (Grenzwerte) und der genehmigten maximalen Anlagenauslastung. Bei Emissionen bis zu den zulässigen Jahresfrachten ist eine Gefährdung von Mensch und Umwelt ausgeschlossen.

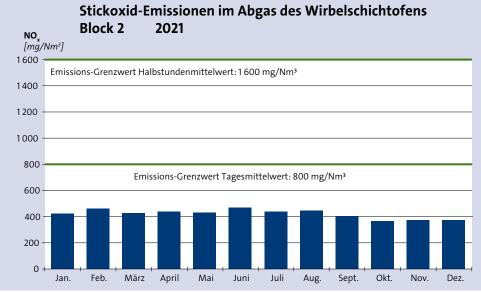
Dies ist einerseits durch die Gesetzgebung und andererseits durch Immissionsprognosen fundiert.

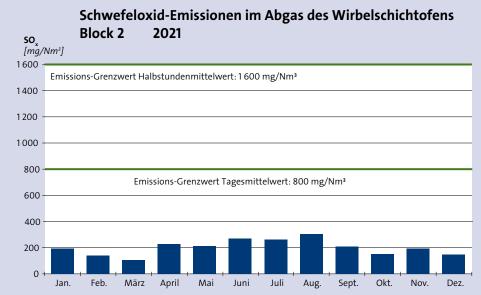
Kontinuierliche Emissionsüberwachung

bei der Produktion von gebranntem Ölschiefer in der Abluft der Wirbelschichtöfen

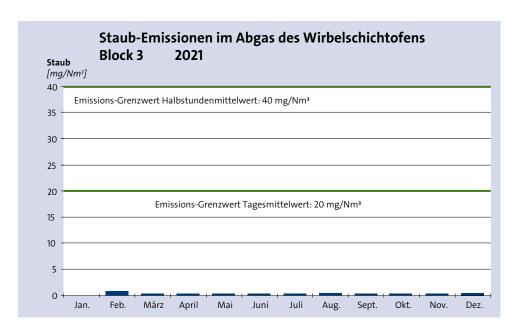
			Emissionen Block 1			missionen E	Block 2	Emissionen I	Block 3	Emissionen Block 4			
2021		Grenzwerte als Tagesmittelwert	Jahres- % vom mittel Grenzwert			Jahres- % vom mittel Grenzwert		Jahres- mittel	% vom Grenzwert	Jahres mittel	% vom Grenzwert		
	Gesamtstaub	Staub	mg/Nm³	20	0,04	0,20		0,01	0,05	0,16	0,80	0,03	0,15
	Stickoxide	NO _x	mg/Nm³	800	371,47	46,43		410,34	51,29	379,63	47,45	351,22	43,90
	Schwefeloxide	SO _x	mg/Nm³	800	290,97	36,37		204,24	25,53	261,60	32,70	66,10	8,26

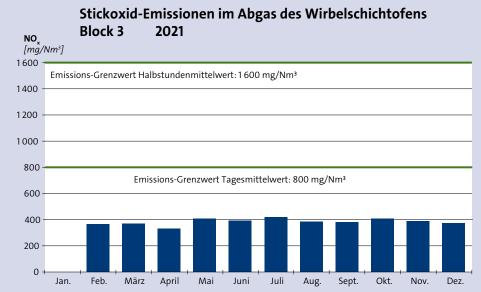


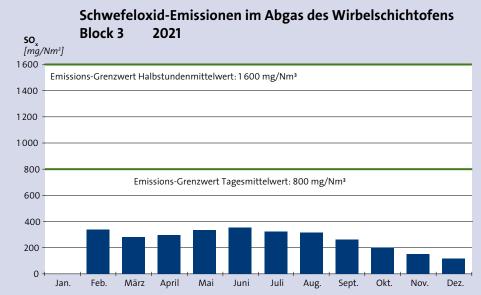



Kontinuierliche Emissionsüberwachung in der Abluft der Wirbelschichtöfen

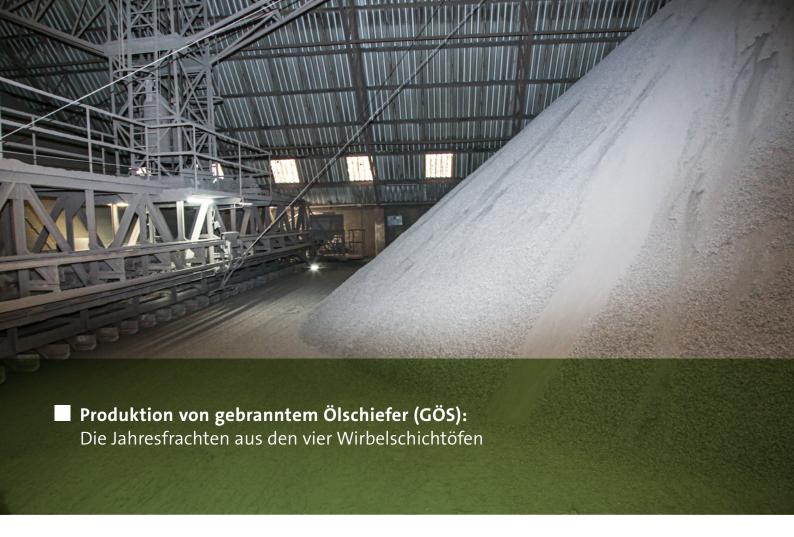
■ Block 2

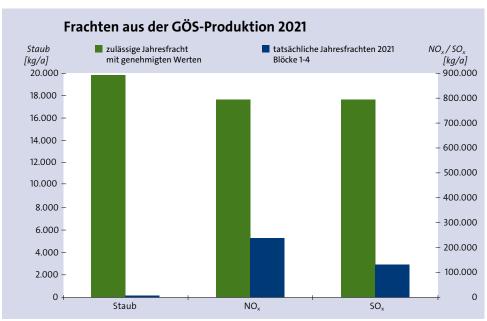





Kontinuierliche Emissionsüberwachung in der Abluft der Wirbelschichtöfen

Block 3





Die tatsächlichen Jahresfrachten werden berechnet über die gemessenen Emissionen und der tatsächlichen Anlagenauslastung in diesem Jahr.

Die zulässigen Jahresfrachten ergeben sich aus den maximal zulässigen Emissionen (Grenzwerte) und der genehmigten maximalen Anlagenauslastung.

Bei Emissionen bis zu den zulässigen Jahresfrachten ist eine Gefährdung von Mensch und Umwelt ausgeschlossen.

Dies ist einerseits durch die Gesetzgebung und andererseits durch Immissionsprognosen fundiert.

2021	Frachten GÖS	i-Produktion	Zulässige Jahresfrachten mit genehmigten Werten	Tatsächliche Jahres- frachten 2021 Blöcke 1-4	% der zulässigen Frachten
Gesamtstaub	Staub	kg/a	19.798	83	0,42
Stickoxide	NO _x	kg/a	791.904	235.774	29,77
Schwefeloxide	SO _x	kg/a	791.904	130.949	16,54

CO₂-Reduktion Zementwerk Dotternhause

CO₂-Emissionen Klinker-Produktion:

505.658 t CO₂

spez. CO₂-Emissionen Klinkerproduktion: 798 kg CO₂ / t Klinker

CO₂-Emissionen GÖS-Produktion:

174.930 t CO₂

spez. CO₂-Emissionen GÖS-Produktion:

550 kg CO₂ / t GÖS

Anteil Ersatzbrennstoffe an der Feuerungswärmeleistung:

☑ geringerer Energieeintrag durch Kohle und damit Kohleausstieg weiter vorangetrieben

Anteil Biomasse an den Brennstoffen:

☑ Brennstoffe durch Biomasse ersetzt

Reduktion Kohle durch Ersatzbrennstoffe:

Menge Ersatzbrennstoffe aus regional anfallenden Abfällen:

78.135 t

☑ weniger Kohle verbraucht ☑ Reduktion von Emissionen bei Abbau und Transport von Südafrika nach Deutschland

123.361 t

☑ weniger Abfälle zur Deponierung ☑ mehr freie Deponiefläche

weniger Kohle

☑ mehr Klimaschutz

☑ Abfälle mit günstigeren Entsorgungskosten

☑ Kostenreduktion bei den Abfallgebühren

CO₂ Reduktion durch Einsatz von

73.163 t

Stromerzeugung aus Abwärme und Bremsenergie der Seilbahn

CO₂ Reduktion durch **Abwärmenutzung**

28.510 t

Eigenstromerzeugung emissionsfrei:

91.968.904 kWh

☑ weniger CO₂-Emissionen für die Stromerzeugung in Deutschland

☑ weniger Strom aus dem öffentlichen Stromnetz ☑ weniger Emissionen bei der anderweitigen Stromerzeugung

Reduktion CO₂ gesamt im Zementwerk **Dotternhausen:**

182.873 t

☑ weniger CO₂-Emissionen jährlich aufgrund des Einsatzes von Ersatzbrennstoffen, des Ersatzes von Klinker durch GÖS und der Abwärmenutzung

Abwärmenutzung für Erwärmung Schweröl, Heizung und Warmwasser

> CO₂ Reduktion durch **Abwärmenutzung**

2.275 t

Menge eingespartes

721 t

☑ weniger CO2-Emissionen für die Wärmeerzeugung durch Heizöl

☑ weniger Heizöl zur Erzeugung der notwendigen Wärme für das Werk

78.925 t

CO₂ Reduktion durch Einsatz von gebranntem Ölschiefer (GÖS) im Zement

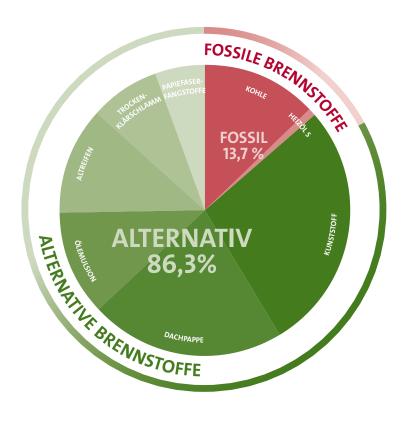
☑ weniger CO₂-Emissionen in der Summe aus der Produktion von Klinker und GÖS

Menge produzierter GÖS: 318.178 t

☑ weniger Klinker in den Zementen weniger Klinker produziert ☑ weniger Kalkstein und Ton verbraucht

Holcim (Süddeutschland) GmbH www.holcim.de

Energieeinsatz im Zementwerk Dotternhausen


Thermische Energie

Die Herstellung von Klinker ist ein sehr energieintensiver Prozess. Um Klinker zu brennen ist eine Flammentemperatur von bis zu 2.000°C und eine Temperatur im Material von mindestens 1.450°C notwendig.

Im Jahr 2021 wurden für die Klinkerproduktion 2.350.938 GJ an thermischer Energie benötigt. Daraus resultiert ein spezifischer Energieverbrauch pro Tonne Produkt (Klinker und Heißmehl) von 3.709 MJ. Auf die produzierte Zementmenge gerechnet ergibt sich daraus ein thermischer Energieverbrauch von 2.468 MJ pro Tonne Zement.

Durch Maßnahmen zur Optimierung der Prozesse und der Anlagenfahrweise, sowie über eine konstant hohe Brennstoffqualität ist es möglich, die thermische Energie auf diesem für Zementwerke niedrigen Wert mindestens zu halten oder noch weiter zu senken.

Zusammensetzung der Brennstoffe

Die Holcim (Süddeutschland) GmbH hat durch den vermehrten Einsatz von Ersatzbrennstoffen den Kohleausstieg bereits zu mehr als 86 % vollzogen.

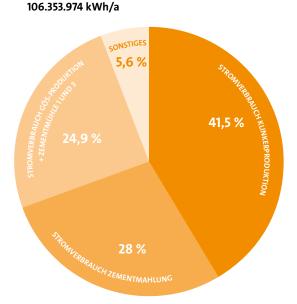
Die meisten im Zementwerk Dotternhausen eingesetzten alternativen Brennstoffe enthalten einen Anteil an Biomasse. Dieser ist in Trockenklärschlamm und Papierfaserfangstoffen sehr hoch, aber auch Dachpappe, Reifen und Kunststofffraktionen haben einen gewissen Anteil an Biomasse.

Der Gesamtanteil der Biomasse über alle eingesetzten Brennstoffe lag im Jahr 2021 bei 20,79 %.

Durch den Ersatz der Kohle durch Ersatzbrennstoffe werden die CO₂-Emissionen aus der Verbrennung reduziert. Denn die Biomasse in den Ersatzbrennstoffen gilt anders als fossile Brennstoffe als "CO₂-Neutral". Bei der Verbrennung von Biomasse wird nur so viel Kohlendioxid freigesetzt, wie die Pflanze im Laufe ihres Wachstums auch aufgenommen hat. Zudem würde die Menge an CO₂, die während der Verbrennung in die Atmosphäre abgegeben wird, durch natürliche Zersetzungsprozesse genauso in die Atmosphäre gehen. Ziel ist es den Biomasseanteil weiter zu erhöhen, und damit die CO₂-Emissionen aus der Verbrennung weiter zu senken.

Die Herstellung von Zementen erfordert einen hohen Strombedarf. Maßgeblich dafür sind sehr große Antriebe, die aufgrund der großen Durchsatzmengen notwendig sind. Der Hautpstromverbrauch geht in die Klinker- und GÖS-Produktion mit deren Brecher, Mühlenantrieben, Ofenantrieben und Gebläsen. Auch die Zementmahlung mit ihren großen Mühlenantrieben, Gebläse und Sichter haben einen erheblichen Stromverbrauch.

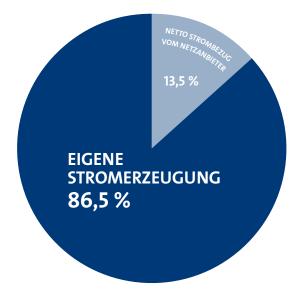
Durch die Einführung eines Energiemanagementsystems und der damit verbundenen kontinuierlichen Energieeffizienzsteigerung, ist es uns möglich den spezifischen Energieverbrauch bezogen auf unsere produzierten Zemente und Bindemittel in 2021 auf 96,48 kWh/t Produkt kontinuierlich weiter zu reduzieren.


Der gesamte Stromverbrauch für das Jahr 2021 lag bei 106.353.974 kWh. Über die Abwärmenutzung aus der GÖS-Produktion, die Nutzung der Bremsenergie der Seilbahn und Dieselgeneratoren konnten wir 86,5 % des Strombedarfs durch eigen produzierten Strom abdecken. Mit dem Eigenstrom würden sich 36788 Zwei-Personen-Haushalte versorgen lassen.

Durch diese Eigenstromproduktion ist das Zementwerk in der Lage auch Strom ins öffentliche Netz zu liefern, um kurzzeitige Stromspitzen durch höheren Verbrauch im öffentlichen Netz abzudecken.

Ohne Stromspitzen kann der Netzbetreiber ein günstigeres Stromband einkaufen, was sich auch bei den Kundentarifen widerspiegelt.

Im Jahr 2021 hat das Zementwerk Dotternhausen zur Regulierung der Stromspitzen im öffentlichen Netz 4.153.678 kWh eingespeist.


Stromverbräuche Stromverbrauch des gesamten Werkes:

Holcim (Süddeutschland) GmbH Zementwerk Dotternhausen Telefon +49 7427 79 0 www.holcim.de

Stromversorgung

Stromerzeugung des gesamten Werkes: 92.009.129 kWh/a

Zertifikat für nachhaltiges Wirtschaften in der Betonindustrie und deren Lieferkette

Ausgabedatum: 1

10-02-2022

Gültig bis

10-02-2025

Version:

1

Zertifizierungsstelle

VDZ Service GmbH VDZ Cert - Zertifizierungsstelle für Managementsysteme Toulouser Allee 71 D- 40476 Düsseldorf

Zertifizierungsobjekt

Beton

Zement

Gesteinskörnung

Hiermit wird erklärt, dass:

Holcim Süddeutschland GmbH, Werk Dotternhausen

Dormettinger Straße 27, 72359 Dotternhausen, Deutschland

nach folgendem Standard bewertet wurde:

Concrete Sustainability Council (2021) DE (Zement) 2.1 Deutsch

VDZ Cert - Zertifizierungsstelle für Managementsysteme der VDZ Service GmbH bestätigt gegenüber der Holcim Süddeutschland GmbH - Werk Dotternhausen - die Konformität mit den Anforderungen des Concrete Sustainability Council RSS.

VDZ Service GmbH ist eine unabhängige akkreditierte Stelle für die Zertifizierung von Managementsystemen sowie die Verifizierung von Treibhausgasemissionsberichten.

Ausgabedatum: 10-02-2022

Version:

Endergebnis: 98,75 %

Teilergebnis pro Kategorie

Kategorie	0	10	20	30	40	50	60	70	80	90	100	
Grundvorraussetzung	100	0,00 %										
Management	100	0,00 %										
Umwelt	100	0,00 %										
Soziales	95,	56 %										
Ökonomie	96,	00 %										

Durch vorbildliche Leistung zusätzlich erworbene Punkte (bereits im obigen Teilergebnis berücksichtigt)

Management 3,03 % Unwelt 1,46 %